Винтовые компрессоры устройство принцип действия. Спиральный холодильный компрессор

Самый передовой тип или профиль зубьев

В роторе используется оптимизированный профиль третьего поколения с соотношением числа зубьев 5:6. Это позволяет обеспечить оптимальное зацепление, максимальную площадь контакта, меньшую длину и площадь утечки, более низкий перепад давления на зубьях и, как следствие, более высокую производительность.

Точная инженерная проработка

Поскольку ротор разработан с относительно низкой степенью вытяжки, он меньше подвержен воздействию изгибного напряжения, имеет низкую частоту вращения, низкий уровень шума и продолжительный срок эксплуатации. Такая конструкция позволяет избежать проблем, которые могут возникнуть при использовании ротора небольшого диаметра в целях экономии средств, особенно при эксплуатации с высокой частотой вращения. Ротор подвергается высокоточной механической обработке и проверке динамической балансировки, он используется в сочетании с подшипниками для тяжелых условий эксплуатации. Рама машины интегрированного типа обрабатывается до высокой точности и обеспечивает соосность винтов и зазоры между ними, увеличивая, таким образом, эффективность сжатия.

Эффективная система фильтрации и сепарации

  • Воздушный фильтр с отверстиями 1 мкм и масляный фильтр с отверстиями 10 мкм отличаются высокой пропускной способностью и обеспечивают длительный срок безопасной эксплуатации установки.
  • Масло и воздух проходят первичную очистку вихревого типа, а затем - вторичную окончательную сепарацию, при этом обеспечивается содержание масла в выходящем воздухе менее 3 ppm.
  • Если предусмотрен фильтр глубокой очистки, то содержание масла уменьшается до 0,001 ppm.
  • В качестве опции возможна установка такого фильтра, после которого качество воздуха будет соответствовать потребностям Заказчика.

Первоклассное технологическое оборудование

Специализированные, технически сложные машины и оборудование используются для обеспечения соответствия расчетным требованиям высокой точности. В процессе обработки поверхности зубьев для точной шлифовки и резки применяется винтовой заточной станок. Рама машины также подвергается обработке.

Машина с оптимальными функциями

В роторе использован оптимизированный профиль третьего поколения с соотношением числа зубьев 5:6. Это обеспечивает оптимальное зацепление, максимальную площадь контакта, меньшую длину и площадь утечки, более низкий перепад давления на зубьях и, как следствие, более высокую производительность.

Передовая технология производства и обработки материалов.

Оптимальная конструкция подшипникового узла обеспечивает продолжительный срок эксплуатации.

Точная шлифовка и резка при обработке поверхности зубьев, обработка каркаса на станках с цифровым управлением. Испытательное оборудование высшего качества способствует экономии в потреблении электроэнергии, снижению уровня шума и обеспечению более высокого качества.

Прочность и надежность позволяют заменить этим устройством изделия импортных брендов. Оно используется в локомотивах в качестве важнейшей части тормозной системы.

Выход воздуха в верхней части

  • Оптимальная конструкция системы циркуляции воздуха обеспечивает необходимый поток воздуха из холодной в горячую зону, снижая температуру в нижней части рамы.
  • Охлаждающий воздух поступает из нижней поперечной части агрегата, а горячий воздух выходит из верхней части в целях обеспечения необходимой вторичной обработки и повторного использования горячего воздуха.

Надежное подключение

  • Жесткое соединение и автоматическое выравнивание двигателя и центральной ЭВМ для обеспечения стабильной безопасности.
  • Импортное гибкое муфтовое соединение, поглощающее воздействия, демпфирующее колебания, обеспечивает эффективную передачу.

Звукоизолирующий кожух

  • Встроенная высокоэффективная система поглощения шума, противопожарный звукоизолирующий материал.
  • Стандартный звукоизолирующий кожух для минимизации шума.
  • Эргономичный дизайн для обеспечения удобной эксплуатации и технического обслуживания.

Высококачественная система охлаждения

  • Применена панельная конструкция, маслоохладитель и доохладитель встроены для обеспечения компактности конструкции и высокой эффективности теплообмена.
  • Качественные материалы и точно выверенный процесс обеспечивают высокую прочность на сжатие и коррозионную стойкость охладителя.
  • Импортный вентилятор известной торговой марки обеспечивает высокую эффективность и низкий уровень шума.
  • Оптимизированная конструкция обеспечивает более низкую рабочую температуру компрессора и температуру подаваемого воздуха, предотвращает поступление влаги в систему циркуляции масла.

Специальный электродвигатель

  • Высокопроизводительный, прочный и долговечный
  • Внешнее смазочное отверстие для удобства эксплуатации и технического обслуживания
  • Изоляция F класса, класс защиты IP54.

Уникальное демпфирующее устройство

  • Уникальная трехпозиционная опора с использованием амортизатора.
  • Высококачественная демпферная система для амортизации вибрации подвижных частей и окончательного устранения вибрации и снижения шума.

Интеллектуальная система управления

  • Управление с помощью ПЛК, функционирование в автоматическом режиме, интеллектуальная работа. Все основные ключевые блоки и части - импортные, известных торговых марок для обеспечения надежной эксплуатации системы управления
  • Предусмотрены различные режимы работы: включение/выключение, непрерывный и автоматический режимы работы в целях снижения эксплуатационных затрат.
  • Защита фазировки, защита от перегрузки.
  • Автоматическая регулировка объема воздуха.
  • Автоматический защитный останов и сигнализация превышения давления и перегрева.
  • Сигнализация и защита блокировки сепаратора «масло-воздух» и защита блокировки фильтра.
  • Возможность подключения к сети, дистанционное управление и управление с взаимной блокировкой.

Технические характеристики винтового компрессора

Модель Мощность двигателя Давление на выходе Производительность атмосферного воздуха Номинальная скорость Габаритные размеры Соединения Уровень шума Масса
кВт МПа (м²/мин) (об/мин) (мм) дБ (А) (кг)
1 7,5 0,7 1,2 1440 770 х 700 х 980 Rp 1/2 67 350
1 1
1,3 0,8
0,8 1,1
2 11 0,7 1,9 1460 910 х 860 х 1400 Rp 1 69 420
1 1,6
1,3 1
0,8 1,8
3 15 0,7 2,6 1460 910 х 860 х 1400 Rp 1 70 450
1 2,1
1,3 1,6
0,8 2,4
4 18,5 0,7 3 2930 1130 х 900 х 1430 Rp 1 ¼ 72 650
1 2,6
1,3 1,9
0,8 2,8
5 22 0,7 3,6 2940 1130 х 900 х 1430 Rp 1 ¼ 72 700
1 3,1
1,3 2,5
0,8 3,4
6 30 0,7 5,2 1470 1290 х 995 х 1420 Rp 1 ½ 72 850
1 4,3
1`,3 3,6
0,8 4,9
7 37 0,7 6,4 2950 1290 х 995 х 1420 Rp 1 ½ 75 900
1 5,5
1,3 4,6
0,8 5,8
8 45 0,7 7,5 1470 2000 х 1200 х 1798 Rp 2 75 1950
1 6,6
1,3 5,2
0,8 7,2
0,5 8,7
9 55 0,7 10,2 2970 2000 х 1200 х 1798 Rp 2 75 1990
1 8,2
1,3 7,2
0,8 9,5
10 75 0,7 13,5 2970 2000 х 1200 х 1798 Rp 2 76 2100
1 11,5
1,3 9,5
0,8 12,4
11 90 0,7 16,5 1480 2000 х 1400 х 1998 Rp 2 ½ 78 2200
1 13,7
1,3 11,5
0,8 15,5
12 110 0,7 20 1480 2000 х 1400 х 1998 Rp 2 ½ 78 2500
1 17
1,3 14
0,8 18,5
13 132 0,7 23,5 1480 2000 х 1400 х 1998 Rp 2 ½ 80 2600
1 20,5
1,3 16,6
0,8 22,5
14 250 0,7 42 1485 3500 х 1800 х 2180 Rp 4 85 4500
1 38,1
1,3 34,6
0,8 40,5

Определение давления

При определении необходимого рабочего давления для обеспечения соответствия потребности оборудования в воздухе необходимо учитывать перепад давления вследствие различного диаметра и длины трубопроводов, сопротивление потоку и потери давления в оборудовании доочистки.

Если рабочее давление значительно меняется в различных блоках оборудования, необходимо рассмотреть возможность применения воздушных компрессоров различного давления.

Выбор модели

Расчет объема воздуха производится согласно стандарту «Руководство по проектированию воздушных компрессорных станций». Предпочтительно, чтобы объем был равен фактическому общему используемому объему плюс допуск. (Стандарт GB/T3853-eqv-ISO1217 можно применять в отношении всех объемов выходящего воздуха, указанных в каталоге компании).

Выберите подходящий воздушный компрессор из перечня, приведенного в таблице, исходя из объема воздуха и давления.

Качество и требования к сжатому воздуху

Большое количество влаги, присутствующей в сжатом воздухе, наносит серьезные повреждения высокоточным измерительным приборам, пневматическому инструменту, пневматическому оборудованию, клапанам, счетчикам и трубопроводам, поскольку влага может вызвать ржавчину и коррозию, загрязнение приборов. Это приводит к снижению качества продукта и повреждению оборудования, в результате чего могут возникнуть значительные расходы на ремонт и техническое обслуживание. Поэтому после воздушного компрессора необходимо предусмотреть систему очистки сжатого воздуха, там, где это требуется в соответствии с условиями эксплуатации.

Место установки

Место установки должно быть просторным и хорошо освещенным для обеспечения простоты эксплуатации и технического обслуживания.

На месте установки должна быть низкая температура, незначительный уровень запыленности, приточный воздух и хорошая вентиляция.


Винтозубые компрессоры роторного типа за 80 лет эксплуатации унифицировались и потеснили поршневые. Низкие параметры шумовой нагрузки, экономичность в потреблении энергии и эксплуатационных затратах дают фору, особенно на производствах, требовательных к чистоте подаваемого сжатого воздуха или специального газа.

Принципиальное устройство винтовых компрессоров

Сжатие и подача газообразной среды достигается синхронным разнонаправленным вращением пары роторов с винтовыми зубьями. Эксплуатационные расходы и характеристики работы агрегата находятся в обратной пропорции. Оборудование демонстрирует эффективность на фоне малозатратности.

Цилиндрический корпус компрессора винтового типа с винтовой парой: ведущим и ведомым роторами в большинстве типов компрессоров имеет масляное наполнение. Слой масла обеспечивает:

  • Снижение коэффициента трения.
  • Является уплотнением, герметизирующим систему.
  • Осуществляет теплоотвод при работе трущихся деталей.

Винтовые компрессоры относятся к необслуживаемому оборудованию, ориентированы на автономную работу. Техническое обслуживание проводится 1 раз в течение года. Персонал не требует высокой квалификации и специального обучения. Пусконаладочные работы краткосрочны.

Работа поршневого компрессора периодически прерывается на регламентированный простой для осмотра и техобслуживания, роторный аналог способен работать без остановки. При этом качество газовой среды на выходе выше (по присутствию паров влаги) и масла в пользу последнего.

Предприятия пищевой, химической и фармацевтической промышленности полностью перешли на экологичные компактные винтовые компрессоры с экономией потребления энергии не менее 30%. Производства непрерывного цикла экономят и на установке дублирующей техники.

Малый вес агрегата, ресивер минимального объёма, отсутствие вибрации при работе позволяет обходиться без заложения фундамента. Изоляция в отдельном помещении требуется только для винтовых компрессоров мощностью свыше 10 кВт.

Последовательность рабочего цикла, устройство и принцип работы винтовых компрессоров

Запуск и переход в рабочий режим занимает 5–10 сек. Срабатывает входной клапан, ответственный за перевод компрессора на холостой ход и обратно. Входной клапан меняет режим работы при достижении пика давления в системе, перед выключением.

Накопление воздуха в ресивере идёт, пока не откроется клапан минимального давления. Он настраивается на минимальный параметр сети. Для одноступенчатого компрессора это 3–4 бар. Многоступенчатые вступают в работу последовательно.

Электрический мотор выводит компрессор на рабочий режим. Винтовая пара через 2 ступени воздушного фильтра получает очищенный воздух в смеси с маслом. В контактном межроторном зазоре создаётся смазывающий роторы и удерживающий газ запирающий масляный клин.

Зазор уплотняется, газовый поток сжимается, давление возрастает. Действие винтовых компрессоров ведётся и при сухом сжатии газовой среды. Полости между корпусом и винтовым блоком работают без масляной смазки.

Сжатый воздух поступает в отделитель масла. В маслоотделителе проводится двухступенчатое разделение сред. Первичное деление проходит под действием центробежной силы, окончательное - в фильтре-сепараторе.

Остывшее масло фильтруется и возвращается в винтовой отсек. Контролирует температурные параметры термостат. При отсутствии превышения температуры нагрева смазка возвращается без затрат времени на охлаждение в радиаторе.

Газ на охлаждение после очистки подаётся из ресивера в концевой охладитель. Температурный баланс радиатора обеспечивает прямоточная вентиляция. Далее воздух винтового компрессора подаётся потребителю.

Контролирует параметры работы винтового нагнетательного оборудования блок управления. Вручную производится только пуск и остановка по регламенту. Переключение режимов работы и аварийную остановку проводит электроника.

Краткий обзор параметров винтовых компрессоров

Роторные механизмы подачи газовой смеси под давлением оснащаются преимущественно электродвигателем, но работают и автономно с дизельным, бензиновым двигателем.

Марка установки Производительность, л/мин Паспортное давление Тип энергии Мощность двигателя, кВт Стоимость, тыс. р
Fini MICRO SE 2.2-10 290 10 380 В 2,2 166
Berg ВК-4Р 7 650 7 380 4,0 168
ЧКЗ ДЭН-5,5-10 600 10 380 5,5 173
Ingro XLM 10A 10 бар 920 10 380 7,5 182
Dali CA-1.7/8-GA 1700 8 380 11 200
Remeza ВК 30 15 ДВС

безмасляный

В данной статье затронем вопрос о принципе работы винтового компрессора.

Повторюсь, что винтовой компрессор относится к компрессорам объемного действия, где сжатие воздуха/газа происходит за счет изменения полости сжатия.

Типичная конструкция винтового компрессора показана на рисунке ниже:

Цифрами на рисунке обозначены:

1 – входной фильтр

2 – всасывающий клапан

3 – винтовой блок

4 – приводной ремень

5 – шкивы ременной передачи

6 – электродвигатель

7 – масляный фильтр

8 – масляный резервуар

9 – сепаратор

10 – клапан минимального давления

11 – термостат

12 – масляный радиатор

13 – воздушный радиатор

14 – вентилятор

В винтовых компрессорах существует два основных потока (или контура): воздушный/газовый поток и масляный поток.

Рассмотрим их подробнее на примере воздушного компрессора.

Воздушный поток

Всасываемый воздух через входной фильтр 1 и всасывающий клапан 2 попадает в винтовой блок 3. Именно в винтовом блоке, который является «сердцем» компрессора, происходит сжатие воздуха.

Основными компонентами винтового блока являются ведущий (ему передается вращение от электродвигателя 6, приводной ремень 4 и шкивы 5) и ведомый роторы:

Принцип сжатия воздуха в винтовом блоке наглядно показан на рисунке ниже:

Следует отметить, что вращение к ведущему ротору может передаваться не только через ременную передачу, но и «напрямую» через эластичную муфту:

Наличие всасывающего клапана 2 позволяет компрессору работать в двух основных режимах:

  • холостой ход (клапан закрыт)

Это отличает винтовой компрессор от, например, поршневого. Наличие режима холостого хода позволяет сократить число пусков двигателя компрессора и, тем самым, увеличить его надежность и срок службы. Ведь частые пуски отрицательно влияют как на сами двигатели, так и на систему энергоснабжения предприятия в целом.

Смесь сжатого роторами воздуха и масла попадает в масляный резервуар 8.

Наличие масла в винтовом блоке необходимо по ряду причин:

  • отвод тепла, образующегося при сжатии воздуха
  • смазка подшипников винтового блока
  • уплотнение камер сжатия за счет образования пленки на поверхности роторов

В масляном резервуаре 8 происходит первичное отделение масла от сжатого воздуха (за счет вращательного движения потока).

Остатки масла отделяются от сжатого воздуха в сепараторе 9 и возвращаются в винтовой блок 3 по специальному каналу.

Очищенный от масла сжатый воздух через клапан минимального давления 10 и охлаждаемый вентилятором 14 воздушный радиатор 13 подается потребителю.

Клапан минимального давления 10 необходим для поддержания в масляном резервуаре 8 давления, требуемого для нормальной циркуляции масла независимо от давления в сети потребителя.

Как правило, клапан минимального давления открывается при давлении на его входе на уровне 4-4,5 бар.

Вентилятор 14 может располагаться как на валу электродвигателя 6, так и приводиться в действие собственным электродвигателем.

Производительность вентилятора и площадь охлаждаемой поверхности радиатора 13 рассчитываются таким образом, чтобы обеспечить температуру сжатого воздуха на выходе компрессора, не превышающую температуру окружающей среды более, чем на 10 °С.

Следует отметить, что система охлаждения винтового компрессора может быть и водяной. В этом случае радиаторы 12 и 13 компрессора представляют собой трубчатые теплообменники, в которых охлаждение рабочей среды (масло, сжатый воздух) обеспечивается циркуляцией воды (или другого охлаждающего агента) в межтрубном пространстве теплообменника.

Применение водяного охлаждения позволяет:

  • снизить уровень шума, производимого компрессором при работе;
  • отказаться от монтажа вентиляционных коробов для отвода от компрессора горячего охлаждающего воздуха.

Масляный контур

Масло из нижней части масляного резервуара 8 возвращается в винтовой блок 3 под действием давления, поддерживаемого внутри резервуара, благодаря наличию клапана минимального давления 10.

В зависимости от температуры масло может двигаться либо по «малому» контуру (масляный резервуар 8 – термостат 11 – масляный фильтр 7 – винтовой блок 3), либо по «большому» (масляный резервуар 8 – термостат 11 – масляный радиатор 12 – масляный фильтр 7 – винтовой блок 3).

Температура масла очень важна для длительной безотказной работы компрессора.

Слишком низкая температура может вызвать выделение конденсата из воздуха еще на этапе сжатия и «эмульгирование» масла, которое значительно ухудшит его эксплуатационные качества. Слишком высокая температура значительно снижает срок службы масла, а также вызывает чрезмерные температурные деформации роторов компрессора, которые могут привести, в худшем случае, даже к заклиниванию компрессора.

Как видите, ничего сложного в устройстве винтового компрессора нет. Современные винтовые компрессоры являются, бесспорно, надежными и эффективными для производства сжатого воздуха как на больших промышленных предприятиях, так и на предприятиях малого бизнеса.

На этом все.

Если у вас остались вопросы, то вы можете задать их в форме ниже. Мы ответим в течение 1-2 рабочих дней.

С уважением,

Константин Широких & Сергей Борисюк

Главным элементом любого является компрессор. Он служит для обеспечения движения хладагента в системе и создания разности давлений.

Относительно недавно стали применяться в холодильной технике компрессоры спирального типа. В основном они работают в составе систем кондиционирования, тепловых насосов, средне и высокотемпературных холодильных установок.

Рабочим элементом спирального компрессора является спираль. Принцип работы холодильного спирального компрессора основан на согласованном вращении одной спирали относительно другой.

Принцип работы спирального холодильного компрессора.

В спиральном компрессоре сжатие паров хладагента происходит между двумя спиралями.

Одна спираль неподвижная, вторая - совершает вращение вокруг неё. Причем это движение имеет непростую траекторию. Электродвигатель, находящийся в одном герметичном корпусе компрессора, совершает работу - вращает вал, на конце которого находится эксцентрично установленная спираль. Вращаясь, подвижная спираль перекатывается по стенкам неподвижной спирали, скользя по масленой плёнке. Точки контакта спиралей постепенно перемещаются от края к центру, причем они расположены на каждом витке рабочего элемента. Захватывая всасываемые пары хладагента в зоне большего объема сжимаемого газа, спирали постепенно сжимают их по мере приближения рабочей зоны к центру, так как объем её уменьшается. Соответственно, в центре спиралей достигается максимальное давление газа, который через линию нагнетания компрессора затем поступает в конденсатор. В спиральном компрессоре, в процессе работы, сжатие паров происходит непрерывно, так как точка касания спиралей не одна и рабочих зон сжатия образуется несколько. Электродвигатели герметичных спиральных компрессоров охлаждаются за счет всасывающих паров хладагента.

Рассмотрим устройство спирального холодильного компрессора на примере продукции . Устройство компрессоров других производителей аналогично. Основные узлы спирального компрессора показаны на рисунке 2.


Рисунок 2. Устройство спирального холодильного компрессора.

Благодаря своей конструкции, количество взаимно трущихся деталей в спиральном компрессоре значительно меньше, чем в что теоретически говорит о его надежности.

Также к достоинствам конструкции можно отнести отсутствие мертвого вредного пространства в зоне сжатия, что увеличивает эффективность работы.

Благодаря тому, что в процессе сжатия газа образуются одновременно несколько рабочих зон, пары хладагента нагнетаются равномерней, чем в поршневых компрессорах и меньшими рабочими объемами, что снижает нагрузку на электродвигатель.

Для повышения эффективности работы, большое внимание в спиральных компрессорах уделяется герметизации боковых и торцевых поверхностей контактов спиралей, для уменьшения перетечек газа между соседними зонами сжатия.

Спиральные компрессоры изначально проектировались и нашли своё наибольшее применение в области высоко- и средне-температурных холодильных систем - это кондиционирование воздуха, чиллеры, тепловые насосы. Но и в низкотемпературных холодильных установках они также используются, благодаря технологии впрыска малого количества хладагента в центр спиралей в процессе работы.

Регулирование производительности спиральных компрессоров возможно с помощью частотных преобразователей, изменяя скорость вращения вала. Кроме этого, производитель спиральных компрессоров Copeland , разработал технологию регулировки производительности за счет изменения расстояния между спиралями во время вращения. Эта технология позволяет работать спиральному компрессору в холостую, вообще не образуя рабочих зон сжатия.

На сегодняшний день спиральные холодильные компрессоры производят и поставляют в Россию и соответственно в Челябинск такие всемирно известные фирмы, как , Danfoss Performer , .

Компрессоры винтового типа относятся к классу ротационного оборудования . Принцип работы таких устройств основан на вращении двух роторов , которые и называют винтами. Первый образец был выпущен еще в 1934 году шведом Элиотом Лисхольном. С тех пор изобретение перетерпело множество изменений, но принцип действия остался прежним.

На сегодняшний день винтовые агрегаты практически полностью вытеснили другие типы компрессоров с мобильных станций, судовых рефрижераторов, из пищевого, стекольного, химического производства, других отраслей промышленности.

Предлагаем посмотреть видеоматериал про устройство и принцип работы винтовых компрессоров

Преимущества

Винтовые компрессоры сконструированы таким образом, чтобы производительность и ресурс двигателей малой мощности росли, а энергопотребление снижалось вполовину. К преимуществам такого рода оборудования относятся компактные размеры, не слишком отягощающий вес, надежность, долговечность .

Винтовые агрегаты не требуют непрерывного обслуживания, поскольку способны длительное время работать в автономном режиме. Они быстро монтируются в собственных рамах без специально обустроенного фундамента, минимально вибрируют при функционировании.

Винтовые типы оснащаются изолирующими шум кожухами, работают тише прочих. В цехах с ними сохраняются максимально комфортные условия для людей.

Большинство представителей описываемого класса оснащаются цифровой платой управления. За счет этого легко менять давление, программировать циклы процессов на таймер, регулировать потребление энергии. Производить действия можно удаленно.

Среди главных преимуществ нельзя не отметить низкий расход масла. На 1 м3 уходит примерно 2-3 мг смазочного материала, что в разы меньше, чем у модификаций. Данный показатель важен для качества выходящего воздуха. работает чище других, а значит, не нуждается в дополнительных фильтрах, может применяться даже для пневматических машин.

Воздушный принцип охлаждения избавляет от необходимости встраивать систему оборотного водоснабжения и позволяет использовать тепло компрессора вторично (например, для обогрева цехов).

Рассказ про компрессоры одного из производителей от специалиста

Устройство и принцип работы

Сжатые воздух и газ заставляют функционировать сложные системы исполнения из пневматических цилиндров, клапанов и прочих механизмов. Винтовой компрессор занимается преобразованием электрической энергии в воздушно-газовый толчок.

Составные части

Любая модель винтового компрессора включает основополагающие детали.